

HYGCEL research presentation

Perspectives to sustainability, safety and profit sharing in green hydrogen value chains

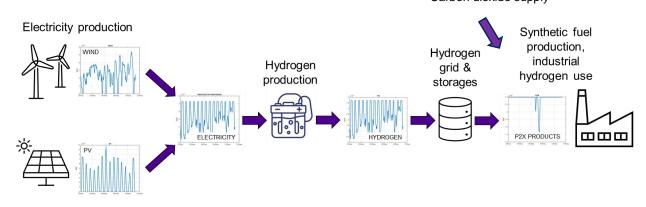
Lappeenranta, May 22, 2024

Presentations in this session

- 1. Profit sharing in PtX investment, case methanol value chain
 - Antti Ylä-Kujala, Post-Doctoral Researcher, LUT University
- 2. Sustainability and safety in PtX value chains
 - Jani Sillman, Post-Doctoral Researcher, LUT University

Profit sharing in PtX investment, case methanol value chain

Topics of this presentation

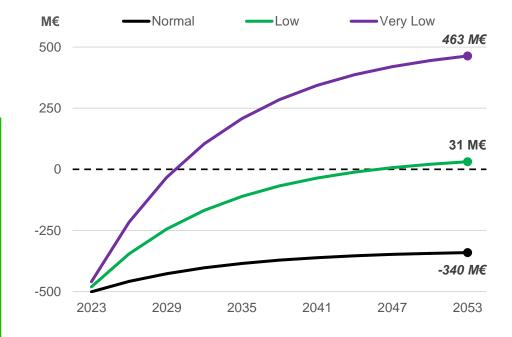

- The role of hydrogen provider in the value chain
- Assessment of economic uncertainties in the value chain
 - > The impact of electricity price, subsidization and interest rates

Contributors:

Jani Sillman, LUT University Antti Ylä-Kujala, LUT Universi Rami Alfasfos, LUT University Husain Patel, LUT University Hannu Karjunen, LUT University Jouni Havukainen, LUT University Timo Kärri, LUT university Risto Soukka, LUT University Mari Tuomaala, LUT University

Life cycle costing (LCC) was used to study profitability potential

- Industrial PtX value chain is a complex chain of unit operations, and all entities are looking for profitable business.
- Case e-methanol was formed to estimate the profitability of individual operations in the value chain using fixed pricing.
- >> Life-cycle costing (LCC) approach based on the discounted cashflow method was used.


5

Positive net cash flow (NCF) for PtX methanol is difficult to achieve

	Electricity price						
NCF	Normal		Low		Very Low		
Carbon Dioxide	76	M€	81	M€	88	M€	
Hydrogen	-856	M€	-514	M€	-128	M€	•
Methanol	440	M€	464	M€	503	M€	
Value Chain	-340	M€	31	M€	463	M€	
					↑		

NCF for the value chain is clearly positive only with very low electricity prices

NCF for the H₂ producer remains negative in all scenarios

Sources: Ylä-Kujala et al., Silman et al. (both articles in review) Prices: normal ~47 €/MWh, low ~ 37 €/MWh, very low ~ 27 €/MWh

Subsidies and interest rate are powerful mechanisms

	Electricity price						
NCF	Normal	Low	Very Low				
Value Chain (Subsidy)	-340 M€	31 M	€ 4631	<u>M€</u>			
Total Investment	518 M€	518 M	€ 5181	M€			
Value Chain (No Subsidy)) -631 M€	-258 M	€ 173	<u>M€</u>			
Total Investment	808 M€	808 M	€ 8081	M€			

Investment subsidy (here: 60%) to H₂ production improves profitability significantly

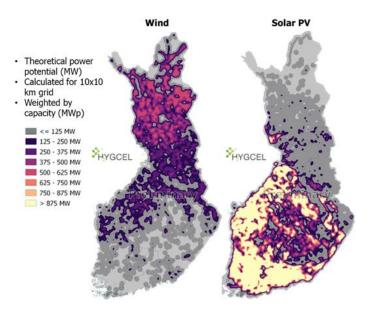
Lowering the interest rate, i.e., WACC, was found to have a significant effect

Profit sharing in PtX investment, case methanol value chain

Key messages

- The role of the H₂ provider is challenging, because profitability lies in value added products
- The value is created in the whole PtX value chains and therefore the value chain should be looked as one business entity instead of separate operations
- The value chain should be measured as one entity in which profits are shared
- Incentives (e.g., subsidization) and collaborative models (e.g., PPA or PPP) are key factors to start investment activity

Sustainability and safety in PtX value chains

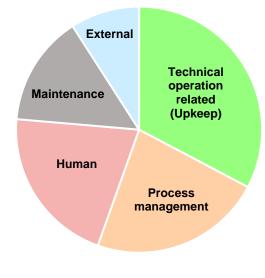

Topics of this presentation

- Sustainable transition of PtX what is it about?
- Results from safety study
- Potential climate benefits

Contributors: Jani Sillman, LUT University Rami Alfasfos, LUT University Husain Patel, LUT University Hannu Karjunen, LUT University Jouni Havukainen, LUT University Risto Soukka, LUT University Mari Tuomaala, LUT University

The sustainable transition needed is about realizing Structure benefits and managing risks

- Examples of benefits and risks on three pillars of sustainability:
 - Economic aspects¹⁾
 - Benefits through profitable business
 - Risks caused by, such as, regulation, new technology and material and energy costs
 - Environmental aspects
 - Benefits achieved through climate mitigation²⁾
 - Risks caused by potential loss of biodiversity (forest land)
 - Social aspects
 - Benefits achieved by new jobs, tax incomes and knowledge
 - Risks caused by unsafe operations ³⁾ and unfair transition



LUT Universitv

Examples provided in this session ^{1), 2), 3)}

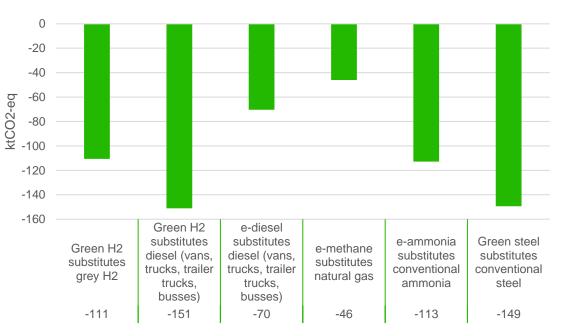
Human activity is the main cause for hydrogen incidents and accidents

Most of the hydrogen incidents and accidents are related to:

>> Human factor is present in most of the root causes of hydrogen

Technical operation

incidents and accidents


- tools and equipment failures with pipes, valves, connection joints etc.
- Process management
 - E.g., lack of protocols, procedures and guidelines to run the facility
- Human activity
 - E.g., failure to follow procedures and training issues
- About half of the hydrogen incidents were related to organizational and managerial issues

Source: Alfasfos et al.2024 HYGCEL results page https://www.lut.fi/en/hygcel

PtX products provide low-carbon alternatives to fossil economy

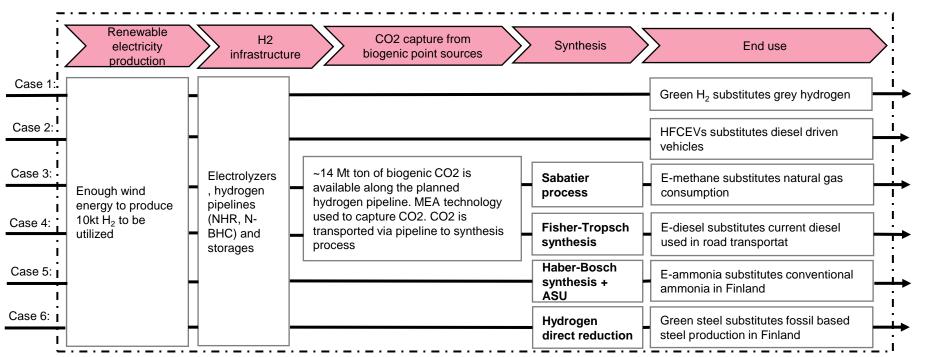
- Emission savings modelled using LCA as a tool
- >> Typical conventional products used as a reference product
- Assumed final PtX product manufacturing and consumption in Finland
- Results show that renewable electricity based H₂ and PtX products are radically better than conventional fossil-based ones in terms of their impact to climate.

Emission savings for use of 10kt green hydrogen in Finland

LUT University

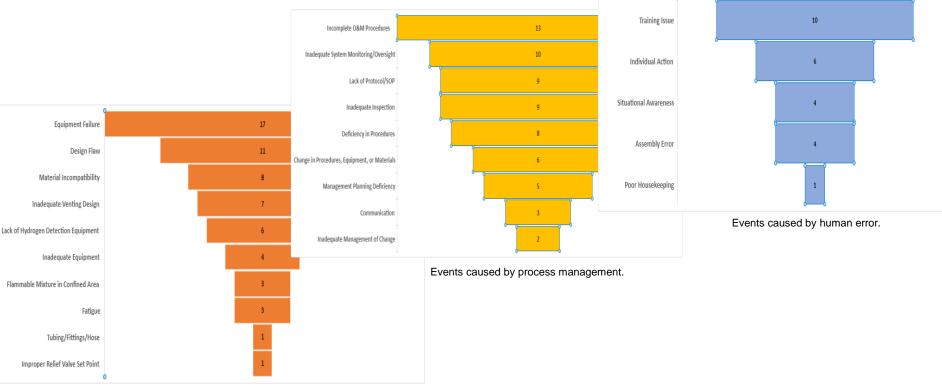
Sustainability and safety in PtX value chains

Key messages and findings


- >> Safety
 - H₂ has been used safely for decades
 - Larger scale H₂ infrastructure increases the accident probability and/or the consequences
 - With a careful **risk management** accidents can be prevented. Severe accidents can **prolong** PtX economy and cause reputational damage.
 - Workforce training (education), better guidelines and improved regulation for H₂ handling are a key for success
- >> Climate mitigation
 - PtX value chains can help to **achieve** national carbon neutrality targets
 - Finland can help **other countries** to achieve their climate targets by providing PtX products (positive carbon handprint) creating also export potentials for Finland
 - H₂ should be **first** utilized in those sectors that can achieve **the highest** emission reductions (steel, ammonia, grey H₂) or are, so called, **hard to abate sectors** (aviation fuel, steel)

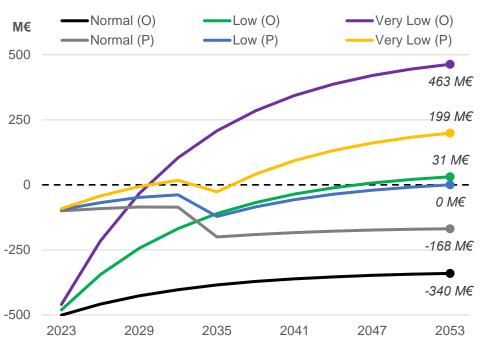
-HYGCEL

Additional reading -LCA modell to assess climate benefits


- Assumptions:
 - Hydrogen leakage 3% in Finland
 - 65% (LHV) electrolysis using 100% wind energy to produce H₂.
 - Average gridmix used in synthesis processes (green steel uses nuclear)
 - Input-output analysis values from literature
 - Cradle-to-use phase
 - Transportation considered

14

Failure To Follow Procedures


Additional reading - safety

Events caused by technical operation related (upkeeping operations).

Source: Alfasfos et al.2024 HYGCEL results page https://www.lut.fi/en/hygcel

Additional reading: Economic vs. environmental goals

Discounted cash flow of one-time investment (O) vs investing in phases (P)

Cumulative emission reductions during 30-year operation

		PtMeoh			
Emission reduction (LCA, End use)					
	Normal	Low	Very low		
One-time Investment [MtCO2-eq/30y]	-19,1	-20,2	-21,9		
Investing in phases [MtCO2-eq/30y]	-13,3	-14,0	-15,0		

Investing can be made in phases. A case study was made first to invest in 150MW electrolyzer, and then scaled up to 750 MW after 10 years.

Capital intensive one-time investments are challenging (economic uncertainty). Investing in phases reduces capital required.

However, the investing in phases reduces cumulative GHG emission savings.

If fast emission reductions are wanted, one-time investments to PtX value chains are desirable