

Power-to-X: Potential of biomethane

Professor Marika Kokko

HYGCEL final seminar & visiting presentations 1.10.2024

Outline

- Biological methanation
- Power-to-X: biological vs. chemical methanation
- Potential of biological methanation in Finland
- Important aspects to consider when planning biological methanation
- Conclusions

Tampere University

Exogenous hydrogen addition

Biological methanation

Figures: Maija Ijäs, Donya Kamravamanesh

Power-to-X: biological vs. chemical methanation

Biological methanation

- Proceeds at ambient temperature (30-70°C) and low pressures (1-10 bars)
- Lower reaction rate
- Less sensitive towards impurities
- More challenging to keep microorganisms active under fluctuating gas streams
- First commercial applications

Catalytic methanation

- Proceeds at high temperatures (200-550°C) and pressures (1-100 bars)
- Higher reaction rate
- More sensitive towards impurities
- More resilient against feed gas flow changes
- Requires catalysts
- Has been under operation for a long time

Potential of biological methanation in Finland – Biogas plants

Original data on methane production from biogas plants in 2020 and 2030 from Finnish Biocycle and Biogas Association

Planning biological methanation – Hydrogen

H₂ production through electrolysis with renewable energy sources

- Electricity cost plays a crucial role in the feasibility of the process
- Life cycle assessment studies have shown that utilizing renewable electricity for H₂ evolution and taking into accoung the natural gas substituted benefits biological methanation scenarios
- H₂ storage and transportation for long distances is difficult and costly; potential to produce H₂ on site is gaining attention (electricity transport required)
- Another option: importing CO₂

Tampere Universitv

Due to low H₂ solubility, the H₂ gas-liquid mass transfer is important

- Improving mixing e.g. via mechanical stirring or gas recirculation
- Using efficient gas diffusers
- Optimizing gas retention time
- Increasing temperature and/or pressure

Planning biological methanation – Gas impurities and flow rate

Impurities may disrupt microbial performance

- $NO_2^- > NO_3^-$ (130 ppm)
- SO_x \rightarrow H₂S (80-355 ppm)
- Tar also may be inhibitory, partly due to PAHs and phenol
- CO may also serve as carbon source

Interruptions in flow rates

 Process recovery may take from hours to weeks depending e.g. on temperature and starvation time

	O ₂	N ₂	CO2	H₂O	со	NOx	sox
Gas stream origin	(%)	(%)	(%)	(%)	(ppm)	(ppm)	(ppm)
Coal combustion –							
flue gasª	13	75.8	5.2	5.35	60	1500	600
Refinery – flue gas ^b	2	59	24	15	N.A.	25	5
Pulp and paper mill							
limekiln – flue gas ^c	1.2	47.4	20.4	30.9	N.A.	175	50
							0-
							10.00
Anaerobic digester							0
– biogas ^d	0-3	0-15	15-60	1-5	<0.6	N.A.	(H ₂ S)
							30-
Landfill gas –							500
biogas ^e	<1-17	N.A.	25-45	1-5	N.A.	N.A.	(H ₂ S)
Gasification of							
OFMSW – syngas ^f	N.A.	N.A.	19.2	N.A.	25.79%	0.053	0.5

Conclusions

Biological methanation has the potential to improve methane production in biogas plants that are envisioned to increase in number in the near future

Biological methanation – important aspects to consider

- Process design, especially H₂ mass transfer
- Origin of CO_2 and H_2 , which affect continuous vs. intermittent availability of the feed gases as well as the presence of impurities in the CO_2 -rich stream
- Use of renewable electricity for H₂ production

Although biological methanation has several advantages over catalytic methanation, various aspects require further improvement

Thank you!

BUSINESS FINLAND